Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine
نویسنده
چکیده
Due to the energy crisis and the environmental issues like pollution and global warming, the exploration for renewable and clean energies becomes crucial. The offshore floating wind turbines (OFWTs) draw a great deal of attention recently as a means to exploit the steadier and stronger wind resources available in deep water seas. This paper studies the hydrodynamic characteristics of a spar-type wind turbine known as the OC3-Hywind concept and the dynamic responses of the turbine. Response characteristics of motions and mooring loads of the system under different sea states are evaluated and the effects of the loads induced by the wind and the wave on the system are discussed. The calculations are carried out with the numerical simulation code FAST in the time domain and the frequency analysis is made by using the FFT method. The results and the conclusions from this paper might help better understand the behavior characteristics of the floating wind turbine system under actual ocean environments and provide valuable data in design and engineering practice.
منابع مشابه
On the Modeling of Spar-type Floating Offshore Wind Turbines
In this paper an overview about floating offshore wind turbines (FOWT) including operating conditions, property and applicability of the barge, tension-leg, and spar floating platforms is described. The spar-floating offshore wind turbines (S-FOWT) have advantages in deepwater and their preliminary design, numerical modeling tools and integrated modeling are reviewed. Important conclusions abou...
متن کاملInvestigating the Behavior of the Mooring System for a Conceptual Design of a Spar Floating Wind Turbine under Survival Conditions
In this paper, selecting of an appropriate mooring system for spar platform of a wind turbine consisting of chain–cable–chain is investigated based on a meta-heuristic method. The purpose is to investigate the hydrodynamic behavior of the structure and the mooring system in a normal and damaged conditions. ANSYS-AQWA software is applied to hydrodynamics analysis and the numerical results were f...
متن کاملFloating Offshore Wind Turbines: Tension Leg Platform and Taught Leg Buoy Concepts Suppoting 3-5 Mw Wind Turbines
The development is presented of two low weight, motion resistant stiff floating wind turbine concepts for deployment in water depths ranging from 30 to several hundred meters in seastates with wave heights up to 30 meters supporting 3-5 MW onshore wind turbines. The floating wind turbines may be fully assembled at a coastal facility in their upright position prior to being towed to the offshore...
متن کاملFloating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment
Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshor...
متن کاملThe Effect of Additional Mooring Chains on the Motion Performance of a Floating Wind Turbine with a Tension Leg Platform
In this study, two types of floating offshore wind turbine (FOWT) systems were proposed: a traditional tension leg platform (TLP) type and a new TLP type with additional mooring chains. They were both based on the National Renewable Energy Laboratory 5 MW offshore wind turbine model. Taking the coupled effect of dynamic response of the top wind turbine, tower support structure and lower mooring...
متن کامل